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Flight Path Angle Dynamics of Air-breathing
Hypersonic Vehicles

Michael A. Bolender ∗

David B. Doman †

Air Force Research Laboratory, Wright-Patterson AFB, OH 45433

Abstract

The flight path dynamics of aircraft are often characterized by the presence of a
right-half plane zero in the elevator-to-flight path angle transfer function. For most
aircraft, the frequency of this zero is high enough that it does not limit the band-
width of the flight control system. This is not the case, however, with air-breathing
hypersonic aircraft. This class of aircraft is characterized by unstable longitudinal
dynamics, strong loop interactions, and the presence of non-minimum phase trans-
mission zeros. In the case of flight-path angle and velocity control, the presence of a
low frequency transmission zero severely limits the achievable bandwidth. We show
that the frequency of the zero is related to the instantaneous center-of-rotation of the
aircraft, which is dependent upon the amount of lift produced by the longitudinal con-
trol effectors. In order to improve flight-path control, we investigate the feasibility of
an aircraft configured with redundant pitch control effectors. The additional effector
moves the instantaneous center-of-rotation, and as a result, the location of the zero.
The trade-off is that the path-attitude decoupling inherent in hypersonic aircraft be-
comes more pronounced. Results are given for both a rigid hypersonic aircraft model
and a model that includes the effects of the first fuselage bending mode.

Introduction

The control of air-breathing hypersonic aircraft poses a set of unique challenges. This class

of aircraft is designed to operate over a range of flight conditions from low subsonic speeds

on approach and landing to flight at high Mach numbers (M > 10) in the uppermost part

of the earth’s atmosphere. To fly through these vastly different speed regimes, a combined

cycle engine will likely be necessary to achieve optimum performance. In the supersonic

∗Aerospace Engineer. Senior Member AIAA.
†Senior Aerospace Engineer. Associate Fellow AIAA.
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speed range, the aircraft will be powered by a ramjet cycle engine. Beginning at approxi-

mately Mach 6 and up to approximately Mach 15, the engine will transition to a supersonic

combustion ramjet (scramjet) cycle. As Mach Number increases, the pressure and tempera-

ture increases that occur when the flow is slowed to subsonic speed significantly reduces the

performance of the ramjet; therefore, the scramjet cycle is necessary above Mach 5 or 6.

A survey of air-breathing hypersonic aircraft designs from the 1960’s to the present

day shows that scramjet engines are highly integrated with the airframe of the vehicle. If

the engines were mounted on pods as is done with today’s commercial airliners, the drag

of the nacelle and supporting structure would exceed the thrust produced by the engine.

An “integrated” vehicle is designed such that the forward fuselage is comprised of several

“ramps” in series. Each ramp generates an oblique shock wave that compresses the air prior

to entering the inlet. Thus the forward fuselage can be tailored to provide the appropriate

amount of compression to the engine at the design flight condition. The pressure rise due

to the forebody compression produces lift on the vehicle in addition to a nose up pitching

moment. The aft fuselage is designed to act as the upper half of an expansion nozzle. The

pressure of the exhaust gas acting on the aft fuselage increases the lift on the vehicle and

adds a small nose down pitching moment. Thus, the propulsion system plays an important

role in the stability and control characteristics of the vehicle since the aerodynamic forces

and moments are dependent not only upon the Mach number, angle-of-attack, and sideslip

angle, but also upon the engine power setting. In addition, performance of the scramjet is

now dependent upon the angle-of-attack, Mach number, and power setting. The angle-of-

attack and Mach number determine the amount of airflow that the engine receives. This is

because the capture area and the amount of spilled airflow are functions of angle-of-attack

and Mach number. The performance of the scramjet is also dependent upon the amount

of compression that the forebody delivers and thus is also a function of Mach and angle-

of-attack. Because the scramjet engine is located on the bottom of the aircraft, the thrust

vector offset from the center-of-mass will contribute a nose-up pitching moment that must
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be countered by the elevator or some other longitudinal control effector.

Previous work by Schmidt1 concluded that an integrated flight-propulsion control system

is necessary to control this class of vehicle. Schmidt also showed that control synthesis is

difficult due the fact that the plant is unstable with non-minimum phase transmission zeros,

there exists significant cross-coupling between the inputs and outputs, and the plant model

possesses significant modeling uncertainty near the gain crossover frequency. Schmidt’s

conclusions were based on the linearized dynamics of a simplified model of the longitudinal

dynamics of an air-breathing hypersonic vehicle.2 More recently, Bolender and Doman3

developed a non-linear model of an air-breathing hypersonic aircraft similar to that of Chavez

and Schmidt2 that exhibits the same qualitative characteristics as above.

The longitudinal dynamics of hypersonic aircraft differ from those of subsonic aircraft.

There is a readily identifiable short-period mode that corresponds to the classical definition,

but the similarities end there. In addition, there is a phugoid mode that is independent of

speed4 and a height mode that is dependent upon ∂T/∂M and ∂T/∂h.5 The height mode

is generally neglected in the dynamics of conventional, subsonic aircraft.

Also, another important difference between hypersonic and conventional aircraft occurs

with the relationship between the flight path and pitch attitude of the vehicle. For supersonic

and hypersonic aircraft, path-attitude decoupling6 is prevalent. The implication of this is

that there is an increased lag in the flight path angle relative to the pitch angle for a given

elevator input. The flying quality metric that determines the lag between the pitch angle

and flight path angle is the “Tθ2 zero”. For conventional, low speed aircraft, the lag between

the flight path angle and the pitch attitude is not readily apparent. For example, the

LearJet7 has a Tθ2 of approximately 1.57 sec at 40,000 ft and Mach 0.7 while the XB-70 has

a Tθ2 ≈ 4.81 s at Mach 3.0 and 60,000 ft.8 Sachs6 derives a physically realizable upper limit

on Tθ2 of approximately 27 s for hypersonic aircraft and shows that the increase in Tθ2 is

due the density gradient of the atmosphere and the aircraft’s speed. In comparison, Mil-

STD-17979 guidance suggests that for Level 1 flying qualities, 1/Tθ2 ≥ 0.28 (or equivalently
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Tθ2 ≤ 3.57 sec) for a Class III aircraft. In a companion paper, Sachs10 shows that the Tθ1

and Tθ2 zeros couple whenever the flight speed of the aircraft is greater than some threshold

speed that is dependent upon the lift curve slope and the lift of the vehicle. The consequence

is that there is no correlation between nz/α and 1/Tθ2 .

Altitude stability is another problem unique to high speed that has been studied.5 Given

the velocities at which hypersonic aircraft travel, a small perturbation in the flight path angle

can result in large changes in altitude. Stengel5 discusses the dependence of altitude stability

on the phugoid and height modes and shows that if Mu, the speed stability derivative, is

only a function of the thrust offset, then the height mode time constant increases. In a

separate study, Bloy11 shows that the amount of thrust offset indirectly affects dynamic

stability through the speed stability derivative, and when the thrust vector is below the

center-of-mass, the phugoid damping is reduced.

Handling qualities requirements for manned hypersonic aircraft have been addressed

in References [12–14]. The reports by Berry12,13 discuss requirements definitions studies

and identify what flying qualities specification would need to be changed to make them

applicable to hypersonic aircraft. On the other hand, McRuer, et.al.14 discussed stability

and control issues in addition to flying qualities deficiencies based on a study of data available

at the time. They cited model uncertainty as a major issue and recommended that flying

quality level designations be tied to uncertainties in the aircraft and control system. Specific

recommendations were only given for the power-off approach and landing phase.

Vu and Biezad15 studied the effects of a direct-lift flap on the GHAME hypersonic model.

They cited an increase in Tθ2 in the hypersonic speed regime as motivation for improving

the γ(s)/θ(s) response. The control system designed by Vu and Biezad was a G-command

control system with “alpha follow-up” and was designed based upon the short period dy-

namics of the aircraft. The direct-lift flap deflection was connected to the elevon deflection

via an interconnect gain. Their control design approach was then validated in a pilot-in-

the-loop simulation to determine handling qualities, and received favorable ratings from the
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test pilot. Vu and Biezad also argue that the an appropriate handling qualities metric for

hypersonic aircraft should be based on the bandwidth of the flight path angle, ωBWγ of the

γ(s)/δs transfer function (δs is the pilot stick input), although they fail to give any specific

recommendation.

In this paper, we will address the effects of vehicle configuration on the available band-

width of the open-loop aircraft dynamics. Specifically, we are interested the response of

the aircraft to changes in flight path angle and velocity. We will show that for a typical

configuration of an air-breathing hypersonic vehicle, where the control inputs are elevator

and throttle, that the response is non-minimum phase and bandwidth limited due to the

location of the right-half plane transmission zero. Subsequently, an alternate configuration

will be proposed and analyzed to show that by changing the configuration of the vehicle,

the bandwidth of the system can be improved.

Problem Statement

Outer loop control of aircraft is done by a pilot or flight management system using velocity

and flight path angle as the controlled variables. In subsonic aircraft the two loops are

controlled using throttle and the elevator respectively when operating on the front-side of

the power-required curve. Since the engines are not integrated with the airframe to the

degree that they are on hypersonic aircraft, the design of the two control loops can be

considered independently.

A vast majority of aircraft are designed with a conventional horizontal tail that uses an

elevator for pitch control, with recent exceptions being the delta-wing/canard configured

fighters that were designed in Europe in the late 1980’s/early 1990’s. If one looks at the

elevator to flight-path angle transfer function, γ(s)/δe(s), over a wide range of aircraft,

one will see the presence of non-minimum phase zeros in the factored transfer function

numerators. From McRuer,16 the numerator is written as: Nγ
δe

= (s + 1/Tγ1)(s + 1/Tγ2)(s +

1/Tγ3), where 1/Tγ3 = −1/Tγ2 are mirror image zeros about the imaginary axis for 1/Tγ3
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A/C Mach Altitude Nγ
δe

F-1048 0.9 35Kft 0.1138(s + .00399)(s − 8.48)(s + 9.18)
Boeing 7478 0.8 40Kft 0.0234(s − .00166)(s − 3.64)(s + 4.08)
LearJet7 0.7 40Kft (s + 0.0041)(s − 13.1531)(s + 13.3757)
XB-708 3.0 60Kft 0.0071(s + 0.00223)(s − 8.42)(s + 8.55)
GHAME15 3 60Kft 0.1467(s+0.0140)(s-7.5973)(s+8.0864)
AFRL Generic HSV3 a 8.0 85Kft 0.0165(s − .0002)(s − 3.4641)(s + 3.5134)

aThis is a modified version of the aircraft model presented in Reference [3]

Table 1: Open-loop γ(s)/δe(s) Transfer Function Numerators

real. A survey of γ(s)/δe(s) zeros for several different aircraft was taken from the literature

and is given in Table 1. It is worthwhile noting that the right-half plane zero in Nγ
δe

is

close in magnitude to the right-half plane transmission zero, and can be considered as a first

approximation to the transmission zero.

The presence of the non-minimum phase zero in the δe to γ transfer function can be

attributed to the fact that if one commands an increase in flight path angle to climb to a

higher altitude, the elevator deflects trailing edge up. The lift produced by the tail instan-

taneously decreases, decreasing the total lift on the aircraft. At this point, the total lift

is now less than the weight of the vehicle, so the aircraft will instantaneously lose altitude

before achieving a positive climb rate. Also, when the elevator is deflected, the aircraft will

experience a change in angle-of-attack. The angle-of-attack initially increases faster than

the pitch attitude, making the flight path angle negative until θ > α.

Traditionally, the lag between flight path angle and pitch attitude is prescribed by im-

posing a lower bound on 1/Tθ2. The pitch attitude to flight path angle transfer function is

approximated by

γ(s)

θ(s)
=

1

Tθ2s + 1
(1)

where Tθ2 ≈ mV0/Lα. However, this approximation is valid only over the frequency range

where the short-period approximation is valid because the actual γ(s)/θ(s) transfer is im-

proper. For hypersonic aircraft, the Tθ1 and Tθ2 zeros can couple, making the specification

of the Tθ2 zero difficult.
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Field, et.al.17 studied the location of the pitch instantaneous center-of-rotation on flying

qualities, focusing their study on the approach and landing tasks. They showed that difficulty

controlling the flight path angle during a flare maneuver is dependent upon the location of

the instantaneous center-of-rotation relative to the center-of-mass, the location of the pilot

relative to the center-of-rotation, and the mass properties of the aircraft. They developed

a geometric criterion to correlate the location of the instantaneous center-of-rotation to the

ability to control flight path in the flare. Applying the geometric criteria to the space shuttle

and the Concorde, which are both high-speed, aft-engine, delta wing configurations, shows

that these aircraft fall in a region that predicts they will possess flight path angle control

deficiencies, susceptibility to pilot-induced oscillations, and a tendency to land short and

heavy.

It is straightforward to show that there is a correspondence between the instantaneous

center-of-rotation and the right-half plane zero in Nγ
δe

. From McRuer,16 the zero of Nγ
δe

that

is of interest is given by

1

Tγ3

=

√
Mα − Mδe

Zδe

Zα (2)

From Field,17 the instantaneous center-of-rotation relative to the center-of-gravity is approx-

imated by lcor = Zδe/Mδe . Direct substitution into Equation 2 gives

1

Tγ3

=

√
Mα − Zα

lcor
(3)

Note that this expression assumes Xδe is zero and that |Xu(Mα̇+Mq)| � |Mα−MδeZα/Mδe |.
Since the dominant contribution to Mα and Lα is from the wing-body, we can see that for

an aircraft with an aft-mounted, horizontal tail, 1/Tγ3 moves to
√

Mα as lcor increases to

infinity. The trajectory that the zero follows in the complex plane will depend upon the

sign of Mα. If Mα < 0, then lower bound for lcor > 0 is imaginary, with the zero becoming

imaginary when lcor = Zα/Mα. The zero will also be imaginary for lcor < 0 since Zα < 0.

This is shown in Figure 1. The case where Mα > 0 is simply the mirror image about the

y-axis.

7



−Inf 0   Inf
0

Inf

l
cor

Z
er

o 
F

re
qu

en
cy

, r
ad

/s
ec

l
cor

=Zα/Mα

Imaginary ImaginaryReal

Figure 1: Zero Frequency as a Function of lcor

It is interesting to note that Tθ2 is also a function of lcor. From McRuer,16 we have

1

Tθ2

=
1

U0
(−Zα +

MαZδe

Mδe

) (4)

Substituting for lcor gives

1

Tθ2

=
1

U0
(−Zα + Mαlcor) (5)

Thus, from Equation 5, the behavior of Tθ2 is dependent upon the sign of Mα.

Thus 1/Tθ2 always increases as lcor increases for a statically unstable aircraft. Therefore,

if the aircraft has Mα > 0, then there will be a path-attitude decoupling that occurs as

the instantaneous center-of-rotation moves to the center-of-gravity. The expressions given

in Equations 3 and 5 show that the placement of 1/Tγ3 and 1/Tθ2 are dependent upon the

lift and pitching moment generated by the elevator. Two or more control effectors working

together and capable of applying a couple on the aircraft will move lcor closer to the center-

of-gravity and improve the location of the 1/Tγ3 zero.

8



We are able to relate the position of the right-half plane zero of Nγ
δe

to Tθ2 since both

are functions of lcor

1

Tγ3

=

√
MαU0

U0 + Tθ2Zα

(6)

Due to the coupling between the propulsion system and the aerodynamics in hypersonic

aircraft, a multi-variable control design approach should be used to optimize the closed-loop

dynamics. We are interested in controlling velocity and flight path angle; however, it can

be shown that this transfer matrix, with elevator and throttle as the control inputs, is not

diagonally dominant. Controlling velocity and flight path angle using throttle and elevator

means that we will have a right-half plane transmission zero. The presence and location

of this zero will limit the available bandwidth of the closed-loop control system.18 The

presence of an unstable pole places a lower bound on the bandwidth since it must be greater

than the frequency of the unstable pole.18 The bounds on the bandwidth won’t limit the

closed-loop performance if there is sufficient frequency separation between the pole and the

zero. Stein19 gives a rule-of-thumb that the bandwidth should exceed the frequency of the

aircraft’s unstable pole by a factor of ten. From the flight control engineer’s point-of-view,

the achievable control system performance is determined by real, physical constraints that

arise due to the aircraft configuration. In order to improve the closed-loop performance, a

change to the aircraft configuration is necessary.

The hypersonic aircraft model we will be using (see Reference [3]) is unstable with a

right-half plane pole s = 1.3121 and a right-half plane transmission zero at s = 3.3449. The

performance that can be achieved for this aircraft using closed-loop control is very limited,

and we can’t achieve the desired closed-loop performance in terms of the requirement that

the bandwidth should exceed the frequency of the unstable pole by a factor of ten.

We want to show that the closed-loop performance of the hypersonic vehicle can be im-

proved by altering the control effectors that are on the vehicle. By modifying the aircraft

configuration, we are forcing the right-half plane transmission zero to move further to the

right in order to provide relief for the control system design. For this paper, we are consider-
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ing only one primary configuration change– the addition of a canard that is ganged with the

elevator using a constant elevator-to-canard interconnect gain. We will analyze the design

for the rigid aircraft for varying canard lengths, interconnect gains, and canard locations in

order to determine sensitivity of the zero location due to non-linear aerodynamics. We will

then show the effects of the canard on the flexible aircraft model given in Reference [3].

Hypersonic Vehicle Model

The aircraft model developed in this study was developed in-house to study flight control

issues pertaining to air-breathing hypersonic vehicles.3 The model uses quasi-steady gas dy-

namics to determine the pressure distribution over the vehicle. The scramjet model includes

a variable area diffuser, a fixed nozzle, and a constant area combustor. The combustion

process is modelled as a change in total temperature to the airflow (Rayleigh flow). The

effects of the fuselage first bending mode on the aircraft dynamics are also captured in the

model. The equations-of-motion for the flexible aircraft model are rather complex because

they account for the effects of pitch and plunge on the flexible modes. As a result it is very

difficult to gain insight into the effect of stability and control derivatives on the poles and

zeros of the linearized system. For this particular study, the model was simplified to include

only the rigid body modes. Two additional changes were made to the engine model. For

simplicity, the diffuser area ratio was fixed to a value of unity. The second change was to

use fuel equivalence ratio as the control input to the engine instead of the change in total

temperature across the combustor. Numerically, this approach avoids some of the scaling

problems associated with using temperature input as the control. The fuel equivalence ra-

tio is defined as φ = f/λ where f is the fuel-to-air ratio and λ is the fuel-to-air ratio for

stoichiometric combustion. The fuel equivalence ratio is related to the total temperature

change across the combustor (ΔT0 = Tt3 − Tt2) by

Tt3

Tt2

=
1 +

Hfηcλφ

cpTt2

(1 + λφ)
(7)
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Open-loop Pole ζ ωn

-1.44 1.0 1.44
1.31 -1.0 1.31
−1.71 × 10−3 1.0 1.71 × 10−3

−1.79 × 10−5 ± 3.96 × 10−2 4.53 × 10−4 3.96 × 10−2

Table 2: Open-loop Poles for Baseline Vehicle

where Hf is the lower heating value of the fuel, ηc is the combustion efficiency, cp is the

specific heat of air, Tt2 is the total temperature at the combustor inlet, and Tt3 is the total

temperature at the combustor exit. For liquid hydrogen, typical values are Hf = 51, 500

BTU/lbm and cp = 0.24 BTU/(lbm ◦R). The combustion efficiency was assumed to be

ηc = 0.9.

The aircraft was trimmed at an altitude of 85,000 ft and at Mach 8 and subsequently

linearized about this trim condition. The open-loop poles are given in Table 2. The aircraft

is open-loop unstable with two real short period poles. The altitude mode is real and stable,

although at a very low frequency. The phugoid mode is also stable, but again it is a slow

mode and is very lightly damped due to the fact that the engine and thrust line-of-action is

below the center-of-gravity. The transmission zeros for the 2 × 2 transfer matrix defined by

y =
[
γ V

]T
and u =

[
δe φ

]T
are 0, −3.3954, and 3.3449. Note that there are three finite

transmission zeros, two that lie on the real axis and the third at the origin. The zero at the

origin corresponds to the kinematic relation ḣ = Vt sin γ.

Canard Configured HSV

In this section, we propose and investigate a configuration change to the hypersonic aircraft

that will move the right-half plane transmission zero further to the right. This is done

in order to increase the available bandwidth for the control design. The proposed design

change is the addition of a canard to the aircraft. The canard will work in conjunction with

the elevator through an interconnect gain. By selecting an appropriate gain and canard

size, lcor is moved closer to the center-of-gravity. This occurs because Lδe is reduced while
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Mδe is increased. The pitching moment that is applied to the aircraft by deflecting the

control surfaces is now almost a couple, which improves the speed of the θ response. We will

first study the rigid aircraft, then we will apply our design to the flexible aircraft model to

investigate the effects of the configuration change on the transmission zeros of the linearized

system.

For our hypersonic aircraft model, the selection of the interconnect gain is not trivial due

to the inherent coupling present in the system. From Equation 2, we know that the position

of the 1/Tγ3 is dependent upon the instantaneous center-of-rotation lCOR = Zδe/Mδe . Since

the canard and elevator are connected by a static gain, we can consider their effects to be

additive. Therefore, we can write the instantaneous center-of-rotation as:

lCOR =
Zδe + kZδc

Mδe + kMδc

(8)

Ideally, we use the canard to place the instantaneous center-of-rotation at the center-of-

gravity in order to drive the zero to infinity. Thus, if we equate the numerator of lCOR = 0,

then the ideal interconnect gain is given by

kopt = −Zδe

Zδc

= −Lδe

Lδc

(9)

The gain kopt sets the deflection of the canard such that it exactly cancels the lift due to the

elevator.

When considering the hypersonic vehicle, or any vehicle for that matter, we have a much

more daunting task. The lift due to the control effectors is in general a non-linear function

of deflection, angle-of-attack, and Mach number. The interconnect gain to keep lCOR at

the center-of-gravity is therefore dependent upon the flight condition and deflection. This

implies that a static gain, while valid in the neighborhood of the trim condition, is not

valid over the entire flight envelope, and dynamic scheduling of the interconnect gain is

required to maintain the location of the instantaneous center-of-rotation. The constraint for

the instantaneous center-of-rotation for the non-linear expression now becomes L(δe, P ) +

L(δc, P ) = 0, where P is a vector of parameters such as Mach and angle-of-attack that

12



uniquely define the lift due to the control effectors. If we assume that δc = kδe, then

L(δe) + L(kδc) = 0 (10)

at a given flight condition. One way to ensure the lift constraint is satisfied is through the

use of control allocation. Using control allocation, we will not need to solve for the gain that

will satisfy the lift constraint explicitly. Instead the control allocation finds the deflections

that satisfy the constraint and gives the desired controlled variable, if there exists a solution

to the control allocation problem. The approach of using control allocation to dynamically

place the system transmission zeros is currently an area of active research.

The configuration study that we undertook considered the effects of the canard mean

aerodynamic chord length and the canard-elevator interconnect gain on the transmission

zeros of the [γ(s) VT (s)] to [δe δφ] transfer matrix. The canard length was varied from 3 ft

to 15 ft and the elevator-canard interconnect gain varied from −2.5 to −1.5. The canard

is deflected in the direction opposite to the elevator with the intent of cancelling the lift

produced by the elevator. The net result is that we reduce the effective Lδe while increasing

Mδe . This subsequently moves the location of the instantaneous center-of-rotation, and as

a result, the right-half plane zero in Nγ
δe

and the right-half plane transmission zero of the

system matrix.

The pole/zero maps for interconnect gains of −1.5, −2.0 and −2.5 are shown in Fig-

ures 2-4. Note that the general trend is for the two real transmission zeros to move away

from the imaginary axis and then break into a stable, albeit a lightly-damped, complex-

conjugate pair. The frequency of the right-half plane transmission zero, as a function of

canard length, is shown in Figure 5 for varying interconnect gains and clearly illustrates this

behavior. Note that for each curve in Figure 5, there is a peak frequency that occurs when

the instantaneous center-of-rotation is located at the center-of-mass (i.e.,, lCOR = 0.) As

the instantaneous center-of-rotation is moved just behind the center-of-mass, the zero will

move to the imaginary axis because the ratio −Zα/lCOR < 0 dominates Mα in Equation 3.

Ideally, in a purely linear system, stable transmission zeros are desired, as this allows the

13



−100 −80 −60 −40 −20 0 20 40 60 80 100
−25

−20

−15

−10

−5

0

5

10

15

20

25

Real

Im
ag

k
ec

=−1.5

Increasing Canard Length

Figure 2: Pole/Transmission Zero Map for Interconnect Gain = -1.5

upper limit on the system bandwidth to be selected arbitrarily.

Figure 6 shows the effect of a fixed canard length and a varying interconnect gain on

the location of the right-half plane transmission zero. We chose a canard length of 7 ft and

varied the interconnect gain from −2.5 to −1.5 in steps of 0.25. The plot again shows that

the two real transmission zeros break into a very lightly damped complex conjugate pair

at some interconnect gain between −3 and −2.75 that corresponds to the condition that

lCOR = 0. Therefore, based on the performance requirements, the canard sizing and the

interconnect gain can be selected to give optimum performance for a given flight condition.

Any uncertainty due to modeling error at a given flight condition will likely not have a

drastic effect on the zero location.

Finally, the effect of the canard position on the transmission zeros is shown in Figure 7.

The canard chord length is fixed at 10 ft, and the interconnect gain between the rudder and

the canard is fixed at −1.5. In Figure 7 we see that the optimum location for the placement

14
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of the control effector for this particular gain is 45 ft behind the nose of the aircraft (positive

is measured forward out the nose). Figure 7 indicates that a direct-lift flap may improve

the system response (see Vu and Biezad15), but is not optimal.

Effects on the Flexible Aircraft

Due to flexibility effects, we expect that the coupling of the structural dynamics with the

rigid body dynamics will alter the structure of the pole-zero map. In fact, for the linearized

dynamics of the nominal, flexible aircraft, we have a significant change in the derivatives

Zδe and Mδe . The flexibility effects not only change the sign of Mδe such that a positive

elevator (trailing edge down) produces a positive moment (nose-up), the magnitude of the

derivative is almost seven times as large as that on the rigid aircraft. The lift produced

by the elevator is increased by an order of magnitude. Thus we can conclude that the

inclusion of the structural dynamics have a significant impact on the linearized plant. While
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perturbations in the elastic aircraft stability and control derivatives were expected, the

magnitude of the changes that we are seeing were not. Thus, it becomes much harder to

select an interconnect gain for the flexible aircraft due to the added flexibility effects of the

structure and the dependence of the elevator and canard effectiveness on the deflection of

the fuselage. While we could easily predict the behavior of the zeros in the rigid case, we

cannot do so given the complex structure of not just the non-linear equations-of-motion, but

the linearized equations as well. Therefore, in the absence of a set of tractable linearized

equations, we are left with a purely numerical exercise to perform for the flexible aircraft.

Note however, that altering the structural model to something simpler (e.g., by ensuring that

the flexible modes are inertially decoupled from the rigid-body modes) the results would be

more tractable analytically.

In Figure 8, the pole-zero locations are shown for the hypersonic aircraft model given in

Reference [3] at the same flight condition as given above for the rigid aircraft. The rotation

of the elevator hinge point with the structure reduces elevator effectiveness when the rotation

of the aft fuselage deflects upward since the apparent angle-of-attack is reduced. Since the

instantaneous center-of-rotation is the ratio Zδe/Mδe , there is not a significant change in its

location due to this effect. For the baseline flexible aircraft, the instantaneous center-of-

rotation is lCOR = 57 ft, so the transmission zeros are essentially unchanged from the values

we saw previously with the rigid aircraft. However, the set of transmission zeros now includes

two pairs of complex-conjugate transmission zeros that are mirrored about the imaginary

axis. These transmission zeros are those associated with the free vibration of the aircraft’s

fuselage. Since the “actuator” and the “sensor” are not collocated, the transmission zeros

mirror each other about the jω axis. These particular right-half plane transmission zeros

are not limiting the bandwidth in a practical sense since they have a natural frequency of

16 rad/sec, which is greater than 10 times the unstable pole at 1.39 rad/sec.

As a result of the added complexity, when the canard is added to the vehicle, we see a

much more complex distribution of the transmission zeros. The pole/zero maps for the same
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Figure 8: Pole/Zero Map of Baseline Flexible Aircraft

gains and canard lengths as for the rigid aircraft example are shown in Figures 9-11. For

the most part, the real transmission zeros couple with the structural modes and split into

a complex conjugate pair. What is readily apparent is that in most cases, the amount of

bandwidth that can be added by moving the instantaneous center-of-rotation is limited. Like

the elevator, the force generated by the canard is not only a function of the deflection and

the angle-of-attack, it is also dependent upon the rotation of the forebody. The deflection

of the forebody is in turn dependent upon the amount of force generated by the canard.

The tendency will be for the deflection angle of the forward fuselage to be reduced at a trim

condition since the canard will apply a force in the positive z direction in order to apply

a nose-down pitching moment (recall that we are using the canard in conjunction with the

elevator in order to apply a couple to the aircraft.) In fact, if the canard down force is

large enough, the mode shape of the aircraft will become anti-symmetric as the concavity

of the deflection curves for the fore and aft beams will differ. The center-of-mass will be
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an inflection point and the maximum deflection will remain at each end of the fuselage.

The situation will become more complicated as additional mode shapes are included in the

model. The position of sensors and actuators relative to, not only one another, but also

the nodal points, is known to have an effect of the position of the transmission zeros.20

Therefore, filtering the sensors is necessary in order to mitigate these unwanted effects.

Figures 12 and 13 show how the transmission zero frequencies vary as the canard position

is moved from the nose of the aircraft close to the center-of-mass. Compared with the

baseline aircraft, the real transmission zeros have become complex conjugate pairs that are

now coupled with the structural zeros. Note that the change in frequency as the canard

moves is not as large as was seen in the rigid aircraft. Again, including more mode shapes

into the model may affect the movement of the right-half plane zeros.
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Figure 9: Pole/Zero Map of Flexible Aircraft with Canard and Interconnect Gain kec = −2.5.
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Conclusions

The control of air-breathing hypersonic aircraft is a difficult problem because the aircraft

are typically dynamically unstable, have a high-degree of loop interaction, and exhibit non-

minimum phase behavior. In particular, the performance that can be achieved by a single-

input single-output control system that regulates the flight-path angle is impacted by the

presence of a low frequency, right-half plane zero in the elevator-to-flight-path angle transfer

function. In the multi-variable case where the inputs are elevator and equivalence ratio and

the outputs are flight-path angle and velocity, there is a right-half plane transmission zero

of approximately the same frequency as the right-half plane zero of Nγ
δe

. It is shown that the

zeros are functions of the instantaneous center-of-rotation for the rigid-body case. In order

to locate the right-half plane zero at a more desirable location, we then investigated the
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effects of adding an additional control surface for pitch control. The additional effector was

ganged with the elevator and it was shown that there is an optimum inter-connect gain that

will exactly cancel the lift produced by the elevator. In the case where the lift of the elevator

is exactly cancelled by the lift of the canard, the zero will move to infinity. A mismatched

gain will move the instantaneous center-of-rotation closer to the center-of-mass, resulting in

a zero that is further to the right as compared to the nominal aircraft. On the rigid aircraft

model, we showed through simulation that the right-half plane zero and its mirror image

moved farther from the imaginary axis until they combined into a stable, although very

lightly damped, complex-conjugate pair. A lower bound on the location of the right-half

plane zero was established. In the case where flexibility effects were added to the model, the

available bandwidth that could be achieved was limited due to complex coupling between

the structural modes and the rigid body modes. In this case, the coupling usually produced

a pair of mirror image complex-conjugate zeros; however, the additional control surface still

showed an improved zero location, although it was more limited than in the rigid body case.
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Appendix A Flight-Path Angle Transmission Zero

Calculation

The non-linear, stability axis equations-of-motion for a rigid aircraft, written with respect

to a flat earth, are

V̇T =
T cos α − D

m
− g sin(θ − α) (A.1)

α̇ = −T sin α + L

mVT

+ Q +
g

VT

cos(θ − α) (A.2)

Q̇ =
M

Iyy

(A.3)

ḣ = VT sin(θ − α) (A.4)

θ̇ = Q (A.5)

where M = Maero + zT T is the sum of the aerodynamic moments and the moment due to

the thrust offset from the center-of-mass.

The linearized, stability axis equations-of-motion for the hypersonic aircraft are given

below for a level, un-accelerated flight. We have assumed that Lα̇ and Mα̇ are negligible.

The state vector is defined as

x =
[
ΔVT Δα ΔQ Δh Δθ

]T
(A.6)

and the control vector is

u =
[
Δδe Δδt

]T
(A.7)

The corresponding state matrix is given by

A =

⎡
⎢⎢⎢⎢⎣

Xv Xα 0 Xh −g
Zv

VT0

Zα

VT0

1−Zq

VT0

Zh

VT0
0

Mv Mα Mq Mh 0
0 −V0 0 0 V0

0 0 1 0 0

⎤
⎥⎥⎥⎥⎦ (A.8)

and the control influence matrix is

B =

⎡
⎢⎢⎢⎢⎢⎣

Xδe Xδt

Zδe

VT0

Zδt

VT0

Mδe Mδt

0 0
0 0

⎤
⎥⎥⎥⎥⎥⎦ (A.9)
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The definitions of the stability and control derivatives for a hypersonic vehicle are different

from their textbook definitions (see Stevens and Lewis21 for example) because there are

functional dependencies that are present for hypersonic aircraft that can be neglected for

subsonic aircraft. The main driver being that air-breathing hypersonic aircraft have an

engine that is highly integrated into the airframe. Thrust is now dependent upon angle-of-

attack, in addition to Mach Number and altitude. The lift and pitching moment are now

functions of the thrust setting in addition to the states (e.g., Q and α) and the elevator.

Therefore, these relationships must be captured in the stability and control derivatives. For

example,

Xα =
1

m

(
∂T

∂α
cos α0 − ∂D

∂α
+ L0

)
(A.10)

where the subscript ()0 denotes the trim value of a particular variable. The complete set

linearized stability and control derivatives for the hypersonic vehicle are found in Appendix

B.

The linearized, stability axis equations-of-motion are in the following form

ẋ =Ax + Bu (A.11)

y = Cx (A.12)

where x ∈ R
n and u, y ∈ R

m. To compute the transmission zeros, it is necessary for the

input, u, to appear in the output equation. This requires differentiating the output equation

with respect to time k times until the first non-zero Markov parameter, CAk−1B, is found.

For the linearized aircraft dynamics above with y =
[
γ Vt

]T
, the first non-zero Markov

parameter is CB giving

ẏ = CAx + CBu (A.13)

Solving for u and substituting into Equation A.11 gives

ẋ = (A − B(CB)−1CA)x + B(CB)−1ẏ (A.14)

If CB is square and invertible, there are n − m finite transmission zeros of the system

(A, B, C). From El-Ghezawi,22 the transmission zeros are given by the eigenvalues of P+AzP
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where P is the set of vectors that spans null(C), P+ is the pseudo-inverse of P , and Az =

A − B(CB)−1CA.

Literal expressions for the transmission zeros of the state-space system given by Equa-

tions A.11-A.12 can easily be found using any symbolic mathematics software package. The

literal expression for the two non-zero transmission zeros for the above linearized aircraft

dynamics is given by the following:

z1, z2 =
1

2

[
Mq +

(VT0 + Zq − 1)(MδeXδt − MδtXδe)

XδtZδe − XδeZδt

±{[
(Zq + VT0 − 1)(MδtXδe − XδtMδe) − Mq(XδtZδe − XδeZδt)

]2

−

4
(
XδeZδt − XδtZδe

)[
Zα(MδtXδe − MδeXδt) + (MδtZδe − MδeZδt)g+

(MαXδt − MδtXα)Zδe + (MδeXα − MαXδe)Zδt

]}1/2

(XδtZδe − XδeZδt)
−1

]
(A.15)

It should be noted that if one uses the full five state linearized equations-of-motion, such

as those given in Equations A.8 and A.9, there will be a third transmission zero at the origin

that corresponds to the climb rate equation.

Appendix B Stability and Control Derivatives for a

Hypersonic Vehicle

The linearized, dimensional stability derivatives for a hypersonic vehicle are
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MV =
1

Iyy

(
∂M

∂VT

+ zT
∂T

∂VT

)
(B.1)

Mα =
1

Iyy

(
∂M

∂α
+ zT

∂T

∂α

)
(B.2)

Mq =
1

Iyy

∂M

∂Q
(B.3)

Mh =
1

Iyy

(
∂M

∂h
+ zT

∂T

∂h

)
(B.4)

Mα̇ =
1

Iyy

∂M

∂α̇
(B.5)

ZV = − 1

m

(
∂T

∂VT

sin α0 +
∂L

∂VT

)
(B.6)

Zα = − 1

m

(
∂T

∂α
+ D0 +

∂L

∂α

)
(B.7)

Zq = − 1

m

∂L

∂Q
(B.8)

Zh = − 1

m

(
∂T

∂h
sin α0 +

∂L

∂α

)
(B.9)

Zα̇ = − 1

m

∂L

∂α̇
(B.10)

XV =
1

m

(
∂T

∂VT

cos α0 − ∂D

∂VT

)
(B.11)

Xα =
1

m

(
∂T

∂α
cos α0 − ∂D

∂α
+ L0

)
(B.12)

Xh =
1

m

(
∂T

∂h
cos α0 − ∂D

∂h

)
(B.13)

The control derivatives are

Xδe = − 1

m

∂D

∂δe
(B.14)

Xφ =
1

m

(
∂T

∂φ
cos α0 − ∂D

∂φ

)
(B.15)

Zδe = − 1

m

∂L

∂δe
(B.16)

Zφ = − 1

m

(
∂T

∂φ
+

∂L

∂φ

)
(B.17)

Mδe =
1

Iyy

∂M

∂δe
(B.18)

Mφ =
1

Iyy

(
∂M

∂φ
+ zT

∂T

∂φ

)
(B.19)

Note that there are several differences when compared to the traditional “textbook”

definitions for the stability and control derivatives. The first is that the thrust is also a

function of angle-of-attack. The dependency of thrust on angle-of-attack is present because

the angle-of-attack, in conjunction with the flow turn angle of the forward fuselage, deter-

mines the angle of the oblique shock off of the nose of the aircraft. The residual effect is that

not only does the pressure behind the shock change due to a change in angle-of-attack, the
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mass flow entering the engine changes, both of which have an effect on the thrust. Second

note that the dependence of the forces and the pitching moment on the equivalence ratio,

φ, is included as the exhaust pressure acts on the lower aft fuselage of the aircraft and

thus contributes to lift, drag, and the pitching moment. Furthermore, in Appendix A we

assumed that Mα̇ and Lα̇ were negligible in our development of the literal expression for the

transmission zeros, but are included here for completeness.

Appendix C Aircraft Configuration Data

The vehicle configuration data for the hypersonic vehicle model shown in Figure 14 and used

in this study are as follows:

L = 100 ft

τ1�
= 6.2◦

τ1u = 3◦

x̄ = 55 ft

ct = St/b = 17 ft

m = 300 slugs/ft

Iyy = 5 × 105 slugs ft2/ft

L1 = 47 ft

Lb = 20 ft

τ2 = 14.4◦

hinlet = 3.25 ft

xc = 5 ft

xt = 85 ft

zt = 3.5 ft

Note that the location of the control surfaces and the center-of-gravity are measured with

respect to the nose of the aircraft. In this case the distance zt is positive up and indicates

that the hinge point of the elevator is 3.5 ft higher than the nose of the aircraft.
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